рефераты
Главная

Рефераты по международному публичному праву

Рефераты по международному частному праву

Рефераты по международным отношениям

Рефераты по культуре и искусству

Рефераты по менеджменту

Рефераты по металлургии

Рефераты по муниципальному праву

Рефераты по налогообложению

Рефераты по оккультизму и уфологии

Рефераты по педагогике

Рефераты по политологии

Рефераты по праву

Биографии

Рефераты по предпринимательству

Рефераты по психологии

Рефераты по радиоэлектронике

Рефераты по риторике

Рефераты по социологии

Рефераты по статистике

Рефераты по страхованию

Рефераты по строительству

Рефераты по таможенной системе

Сочинения по литературе и русскому языку

Рефераты по теории государства и права

Рефераты по теории организации

Рефераты по теплотехнике

Рефераты по технологии

Рефераты по товароведению

Рефераты по транспорту

Рефераты по трудовому праву

Рефераты по туризму

Рефераты по уголовному праву и процессу

Рефераты по управлению

Реферат: Физико-статистическая оценка ресурса теплообменных труб с начальными дефектами производства в виде трещин

Реферат: Физико-статистическая оценка ресурса теплообменных труб с начальными дефектами производства в виде трещин

.

В настоящее время при конструировании и разработке энергетического оборудования, в частнос­ти парогенераторов для быстрых реакторов большой мощности возникает задача прогнозирования уровня надежности элементов и узлов этого оборудования. Как показывает опыт эксплуатации, одним из основных видов отказа парогенератора "натрий - вода" является течь воды в натрий, которая возникает после образования сквозной трещины в поверхности теплообмена. С этой точки зрения, в качестве основного процесса отказа целесообразно выбрать рост усталостной трещины в теплообменной трубке парогенератора "натрий – вода”, возникшей на месте начального дефекта производства трещиноподобного типа присутствовавшего в материале трубки. Очевидно, что критерием отказа в этом случае будет появление сквозной трещины в стенке теплообменной трубки.

Для определения характеристик надежности в этих условиях на этапе проектно-конструкторской разработки предлагается использовать математическую модель, а именно зависимость вида

                          

                                             

                                                                  (1)

где Н - показатель надежности, являющийся Функцией следующих аргументов:  t - время;  b0 -начальное повреждение материала трубки;  G - нагрузка; Мф - масштабный фактор.

         Модель должна соответствовать следующим требованиям: иметь простую структуру; содержать небольшое  число основных значимых параметров; позволять физическую интерпретацию полученных зависимостей  должна быть пригодной для прогнозирования срока службы изделия. В основе модели лежит предположение о том, что поверхность теплообмена трубки площадью Sn , содержит начальные дефекты эллиптической формы, расположенные перпендикулярно к первичным окружным напряжениям. В связи с тем, что трубка представляет собой тонкостенный сосуд давления, поверхностные дефекты подобного расположения, формы и ориентации наиболее склонны к развитию . В процессе эксплуатации дефект растет по глубине, оставаясь геометрически подобной фигурой. Глубина начального дефекта В0  является случайной величиной. Введем условную функцию распределения  H0(x/y), которая представляет собой вероятность того, что на поверхности площадью Sn=y существует дефект глубина которого В0,<x :

                                                          

                                                                                     (2)           

где к  ,  р - опытные константы.

               Под  действием циклических знакопеременных термонапряжений, действующих на поверхности теплообменной трубки при эксплуатации парогенератора "натрий - вода" начальный дефект прорастает по глубине. Рост глубины дефекта во времени полагаем нестационарным случайным процессом B(t) основными характеристиками которого считаем функцию математического ожиданиия mb(t) и функцию распределения Fb(x,t)  в сечении случайного процесса. В общем виде виде эти харак­теристики можно определять исходя из некоторых положений линейной механики разрушения. Известно, что все многообразие интегральных кривых роста трещины в зависимости от наработки могло свести к четырем формам , одной из которых, наиболее приемлемой в данном случав, является криволинейная кривая прогрессирующего типа. Поэтому очевидно, что mb ( t ) является нелинейной функцией времени параболического вида. При этом необходимо также учитывать, что процесс роста трещины идет скачкообразно. Исходя из вышеуказанных соображений, предлагается в качестве функции математического ожидания mb ( t ) процесса  B ( t ) выбрать следующую зависимость:

                                          

                                                                  (3)

где m0 математическое ожидание глубины начального дефекта  B0; Dbср - средняя величина скачка трещины;  W (t) - неубывающая функция времени, представляющая собой число скачков трещины в единицу времени.

Таким образом, в выражения (3) Dbср представляет средний размер скачка трещины, а произведение  W ( t ) t  определяет число таких скачков за время  t . Считаем, что распределение размера трещины в фиксированный момент времени t полностью определяется условнымм распределением начальных дефектов  Н0(x/y).

Тогда

                             

    Из выражения (2) получаем

                                     

Исходя из данного выше критерия отказа, под вероятностью отказа Q ( t )  телообменной трубки следует понимать вероятность пересечения нестационарным случайным процессом В ( t ) Фиксированного уровня  h . где h - толщина стенки трубки. Для определения Q ( t )  необходимо определять условную плотность распределения времени до пересечения фиксированной границы

Q ( t /y)  :       

                       

                                   

          Тогда

                                                                                                                                            

                                                             (4)  

     

                 

Таким образом, выражение (1) для показателя надежности Н можно представить в следующем виде:

                                

где  m0 - математическое ожидание глубины начального дефекта, характеризующее начальное пов­реждение материала трубки;  Dbср и  W(t) определяются условиями нагружения  G ; Sn определяется размерами трубки  Mф.

Рассмотрим вопрос об определении этих параметров. Математическое ожидание глубины началь­ного дефекта m0 определяется с помощью операции повторного математического ожидания с использованием выражения (2)

                                             m0=M[M(b0/y)]     

                                                      (5) 

Константы К и P  в выражении (2) определяются с помощью статистической обработки резу­льтатов дефектоскопических исследований материалов и узлов парогенератора "натрий - вода" при его изготовлении и испытаниях. Естественно, что на этапе проектирования данной конкретной кон­струкции таких данных может и не быть, но дело в том, что размеры начальных дефектов не связа­ны непосредственно с типом конструкции, а в основном зависят от материала элементов и условий их изготовления и обработки. Поэтому набор статистики для определения К и P не представляет принципиальных трудностей.

            Для определения параметра  Dbср  можно воспользоваться известными соотношениями для скорости роста усталостной трещины , методом моделирования или экспериментальными методами. Для определения параметра  W(t)   - интенсивности скачков трещины - воспользуемся условием рос­та усталостной трещины в металле при циклическом нагружении  :

                      

                                                         (6)

где Dbср - величина   i -го  скачка трещины;  Ds ( ti ) - амплитуда действующего напряжения в момент времени  ti ; s-1(ti) - значение предела выносливости в момент ti.

Поведение предела выносливости во времени можно описать случайной функцией времени s-1 (t), которая представляет собой произведение случайной величины s-1  на неслучайную функции времени j(t, называемую функцией усталости 

                                             

         Функцию усталости естественно считать непрерывной монотонно убывавшей функцией, такой, что

                                       

 

и определенной при всех   t > 0 .

Амплитуду нагрузки  Ds ( t ) во времени считаем стационарным случайным процессом с нулевым математическим ожиданием и ненулевой дисперсией.

 Таким образом, для определения W ( t ) необходимо определить число пересеченхй в единицу времени стационарного случайного процесса со .случайной функцией  s-1 ( t ). Вероятность пересечения   g ( t ) можно выразить следующим образом :

                                    

где f (r ) ,f (s ) - плотность вероятности в сечениях   s-1( t ) и  Ds ( t ) соответственно.

              Тогда                                                      

                                                                                                                                           

                                                             (7)

В заключение следует отмеить, что исходя из предложенной модели надежности можно рассмот­реть примерную методику расчета характеристик надежности трубки теплообмена на этапе проектирования:

1) получение исходной информации об условиях эксплуатации, начальных дефектах и харахтеристиках материала трубки;

2) Выделение наиболее "опасных" в надежностном отношении сечений трубки, т.е. тех участков поверхности теплообмена, где сочетание эксплуатационных и конструкционных факторов наиболее благоприятствует зарождению и развитию усталостных трещин;

3) определение параметров модели для каждого из сечений по формулам (5), (7);

4) расчет характеристик надежности трубки для каждого сечения на основе формулы (4);

5) расчет характеристик надежности трубки в целом, исходя из того, что появления сквозных трещин различных сечениях трубки являются независимыми событиями.

        

                Список   литературы:

1. Вессал  Э. Расчеты стальных конструкций с крупными оечениями методами механики раврушения.-В кн.: Новые методы оценки сопротивления металлов хрупкому. разрушению. М.: Мир, 1972.

2. Миллер А. и др. Коррозионное растрескивание циркаллоя под воздействием йода. - Атомная техника за рубежом, 1984, № 2, с.35.

3. Волков Д.П., Николаев С.Н. Надежность строительных машин и оборудования. М.: Высшая школа, 1979.

4. Острейковскнй В.А. Многофакторные испытания на надежность. Ц.: Энергия, 1978.

5. Острейковский В.А., Савин В.Н. Оценка надежности трубок прямоточного теплообмена. -Известия ВУЗов. Сер. Машиностроение, 1984, № 2, с. 47.

6. Гулина O.М., Острейковский В.А. Аналитические зависимости для оценки надежности с учетом корреляции между нагрузкой и несущей способностью объекта, - Надежность и контроль качества, 1981.

№2б, c.36.


© 2012 Рефераты, доклады и дипломные работы, курсовые работы бесплатно.