рефераты
Главная

Рефераты по международному публичному праву

Рефераты по международному частному праву

Рефераты по международным отношениям

Рефераты по культуре и искусству

Рефераты по менеджменту

Рефераты по металлургии

Рефераты по муниципальному праву

Рефераты по налогообложению

Рефераты по оккультизму и уфологии

Рефераты по педагогике

Рефераты по политологии

Рефераты по праву

Биографии

Рефераты по предпринимательству

Рефераты по психологии

Рефераты по радиоэлектронике

Рефераты по риторике

Рефераты по социологии

Рефераты по статистике

Рефераты по страхованию

Рефераты по строительству

Рефераты по таможенной системе

Сочинения по литературе и русскому языку

Рефераты по теории государства и права

Рефераты по теории организации

Рефераты по теплотехнике

Рефераты по технологии

Рефераты по товароведению

Рефераты по транспорту

Рефераты по трудовому праву

Рефераты по туризму

Рефераты по уголовному праву и процессу

Рефераты по управлению

Курсовая работа: Разработка и расчет гидропривода

Курсовая работа: Разработка и расчет гидропривода

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Ярославский государственный технический университет

Кафедра «ПАХТ»

Курсовой проект защищен

с оценкой ______________

Руководитель

М.В.Куликов___________

«___»_____________ 2009


Курсова работа

по дисциплине «Гидравлическое оборудование»

Разработка и расчет гидропривода

Нормоконтролер: Работу выполнил:

Леонтьев В.К. студент группы АТ-43

«___»__________2009 ________Д.Е. Юдицкий

«__»_________2009

2009


ОГЛАВЛЕНИЕ

Введение

1.  Разработка принципиальной схемы гидропривода

1.1 Выбор способа регулирования

1.2.Выбор схемы циркуляции жидкости

2.  Расчет параметров и подбор элементов гидропривода

2.1 Выбор номинального рабочего давления

2.2 Расчет размеров и подбор гидродвигателя. Выбор типа гидродвигателя и определение давления, реализуемого на нем

2.3 Расчет и подбор гидроцилиндра

2.4 Выбор гидроаппаратуры и вспомогательных устройств

2.5 Выбор рабочей жидкости

2.6 Расчет гидролиний

2.7 Определение параметров и подбор насоса

2.8 Общий КПД гидропривода

Список используемой литературы


Введение

Объемным гидроприводом называется совокупность устройств – гидромашин объемного действия и гидроаппаратов, предназначенных для передачи механической энергии и преобразования движения посредством жидкости.

К достоинствам гидропривода относят:

- возможность создания больших передаточных отношений и бесступенчатое регулирование скорости движения выходного звена и усилий в широком диапазоне;

- высокая удельная мощность (вес гидропривода, приходящийся на 1 кВт передаваемой мощности составляет не более 23 Н);

- малая инерционность, что обеспечивает быстрый пуск, реверс, останов (момент инерции подвижных элементов гидропривода в 5..6 раз меньше, чем у электромашин той же мощности);

- возможность просто и надежно предохранять элементы гидропривода и рабочей машины от перегрузок.

Недостатки гидропривода:

- потери энергии значительно выше, чем в электроприводе (гидропривод имеет более низкий КПД);

- влияние условий эксплуатации (температуры) на характеристики гидропривода;

- постепенное снижение КПД в процессе эксплуатации - за счет роста утечек жидкости по мере износа деталей привода.

Объемный гидропривод широко используется в строительных и дорожных машинах, станках, транспортных и сельскохозяйственных машинах и в других отраслях техники.


1. РА3РАБОТКА ПРИНЦИПИЛЬНОЙ СХЕМЫ ГИДРОПРИВОДА

1.1 Выбор способа регулирования

гидропривод гидродвигатель насос

Дроссельное регyлирование скорости движения выходного звена гидродвигателя осуществляется за счет ограничения подачи жидкости к гидродвигателю путем введения в гидролинию дополнительного, в данном случае - регулируемого, гидравлического сопротивления - дросселя. При этом избыток рабочей жидкости, подаваемой насосом, через переливной клапан поступает непосредственно в сливную линию (минуя гидродвигатель). При выборе способа регулировки скорости следует учесть следующие особенности дроссельного регулирования.

Оборудование гидропривода в этом случае в целом дешевле, чем при объемном регулировании: устанавливаются более простые, а именно – нерегулируемые, насос и (или) гидродвигатель.

К.П.Д. гидропривода существенно ниже, чем при объемном регулировании: в самом принципе заложены объемные и гидравлические потери.

В результате гидравлических потерь при дросселировании жидкость нагревается, что, при большой передаваемой мощности и ограниченности теплоотдающих поверхностей, потребует установки теплообменников (холодильников).

По указанным выше причинам передаваемая мощность при этом способе регулирования ограничивается (примерно до 3 кВт - при длительном и до 5 кВт - при кратковременном режиме работы),

Скорость движения выходного звено определяется не только воздействием дросселя на поток жидкости, но и нагрузкой на выходном звене гидродвигателя: с увеличением нагрузки скорость уменьшается. Поэтому, если нагрузка существенно меняется, а скорость должна оставаться постоянной, необходимо предусмотреть установку регулятора скорости устройства, сочетающего дроссель и редукционный клапан.

В гидроприводе дроссель может быть установлен на входе в гидродвигатель, на выходе из него или на ответвлении – параллельно с гидродвигателем.

В первом случае регулирование дросселем возможно лишь при отрицательной нагрузке, то есть тогда, когда направление действия нагрузки не совпадает с направлением движения выходного звена. Кроме того, при положительной нагрузке (при совпадении указанных направлений) возможен разрыв потока в напорной полости гидродвигателя и падение груза - следствие отсутствия ощутимого сопротивления в сливной линии. При установке дросселя на входе жидкость поступает в гидродвигатель нагретой, что ухудшает условия работы последнего.

При установке дросселя на выходе регулирование возможно при любом направлении действия нагрузки. Преимуществом этого варианта перед первым является и то, что в гидродвигатель жидкость поступает менее нагретой: нагрев ее в дросселе происходит после гидродвигателя. Нагретая жидкость сливается в гидробак, где охлаждается.

При параллельном подключении дросселя регулирование, как и в первом варианте возможно лишь при отрицательной нагрузке. Точность регулирования скорости и ее стабильность при изменении нагрузки ниже, чем в первых двух случаях. Преимущество этого варианта – наименьший нагрев жидкости. Это связано с тем, что дросселируется лишь часть потока жидкости.

Объемное регулирование осуществляется за счет изменения рабочего объема насоса или гидродвигателя, или насоса и гидродвигателя вместе.

Отличительные особенности этого способ следующие. Более высокий К.П.Д. (до 0.650,75), чем при дроссельном регулировании. 3начительно меньший нагрев рабочей жидкости. Нет необходимости устанавливать гидрораспределители: реверсирование выполняется регулируемым насосом, причем этот процесс идет более плавно; чем при реверсировании гидрораспредeлителем. 3начительно более широкий диапазон регулировании скорости.

Недостаток схем с объемным регулированием – необходимость установки более сложного и дорогого оборудования, а именно - насоса, и при вращательном движении – гидродвигателя.

Этот способ целесообрзно исползовать в гидроприводах средней и большой мощности, так как именно в этих случаях экономия энергии будет наиболее ощутима (за счет повышения К.П.Д.).

Как следует из вышеизложенного, одним из важнейших и первоочередных вопросов, который надо решить при выборе способа регулирования, является оценка мощности, передаваемой гидроприводом. Вопрос решается на основании исходных данных, с учетом заданного характера движения выходного звена гидропривода.

Мощность, реализуемая гидродвигателем при поступательном движении, составит

Где F – усилие на рабочем органе (на штоке), по заданию F=12000 Н;

u – скорость движения выходного звена, по заданию u=0.03 м/с;

Из выше сказанного следует, что при Nдв=0,36 кВт, надо выбрать дроссельное регулирование, т.к. установка получается малой мощности.


1.2 Выбор схемы циркуляции жидкости

При решении этого вопроса надо учесть следующие обстоятельства. В открытой схеме всасывающая линия насоса и сливная – гидродвигателя разомкнуты между собой. Они сообщаются с гидробаком, давление на поверхности жидкости в котором – атмосферное. Наличие гидробака, содержащего запас жидкости, обеспечивает лучшие условия для отвода тепла из системы. Эта схема позволяет питать одним насосом несколько гидродвигателей. В целиком, она проще закрытой. Однако, реверсирование насосом в этом случае осуществить нельзя – необходима установка гидрораспределителя. Разряжение во всасывающей линии насоса способствует возникновению кавитации и подсосу воздуха в систему.

В закрытой схеме рабочая жидкость после гидродвигателя направляется непосредственно в насос. Таким образом основной контур циркуляции не связан с атмосферой, что защищает систему от загрязнений, например, при работе в запыленной среде. Кроме того наличие повышенного давления в низконапорной магистрали уменьшает возможность возникновения кавитации. В этой схеме реверсирование легко осуществляется регулируемым насосом. К недостаткам закрытой схемы следует отнести сложность охлаждения и необходимость установки дополнительного оборудования – системы подпитки – для компенсации утечки жидкости через неплотности во внешнюю среду.

Из-за сложности охлаждения и необходимости установки дополнительного оборудования, выбираю открытую схему циркуляции жидкости.

Схема данного гидропривода представлена на рисунке 1.

Рисунок 1.1-Насос; 2-Гидроцилиндр; 3-Гидрораспределитель; 4-Переливной клапан; 5-Фильтр; 6-Бак; 7-Дроссель;



2. РАСЧЕТ ПАРАМЕТPОВ И ПОДБОР ЭЛЕМЕНТОВ ГИДРОПРИВОДА

2.1 Выбор номинального рабочего давления

Давление в гидросистеме зависит от типа насоса и назначения данного гидропривода. Давление насоса должно быть тем больше, чем больше нагрузка или мощность приводимого в движение механизма. Малые давления приводят к возрастанию габаритов и веса, но способствуют плавной и устойчивой работе гидропривода; большие давления снижают вес, но усложняют конструкцию и эксплуатацию гидросистем, уменьшают долговечность гидрооборудования.

Чем выше давление, тем выше требования к качеству (класс точности, чистота обработки, материал) сопрягаемых деталей, к жесткости конструкции в целом. При давлениях свыше 20-25 МПа в жидкости могут возникать упругие колебания, вызывающие гидравлические удары в системе, вибрацию подвижных деталей, усложняется уплотнение подвижных и неподвижных соединений.

Поэтому из стандартного ряда назначаем давление Рн=10 МПа.

2.2 Расчет размеров и подбор гидродвигателя. Выбор типа гидродвигателя и определениедавления, реализуемого на нем

Тип гидродвигателя (гидроцилиндр, поворотный гидродвигатель или гидромотор) определяется в соответствии с заданным характером движения выходного звена. От параметров гидродвигателя – номинального давления  и номинального расхода в конечном итоге зависят аналогичные параметры насоса.

По заданию вид движения выходного звена – возвратно-поступательное, значит тип гидродвигателя – гидроцилиндр.

Ориентировочное давление в рабочей полости гидродвигателя

где  - давление, развиваемое насосом, соответствует номинальному рабочему давлению принятому ранее; Рн=10 МПа;

            - гидравлический К.П.Д. системы.

Предварительно его можно принять в пределах 0,7-0,8. Принимаем =0.75.

Для открытой схемы реализуемое гидродвигалем давление составит

2.3 Расчет и подбор гидроцилиндра

Гидроцилиндры могут быть одностороннего действия, когда возвратное движение поршня происходит под действием груза или пружины и двухстороннего,_ когда движение в обоих направлениях осуществляется под действием рабочей жидкости. Во втором случае гидроцилиндры могут иметь односторонний шток, когда скорость возвратного движения не регламентируется, и двусторонний, когда скорость и усилия 2 обоих направлениях должны быть одинаковыми. Указанные обстоятельства должна быть учтены при расчете диаметра поршня. Так как гидроцилиндра с двусторонним штоком, из-за сложности изготовления и увеличения габаритов машины, применяются сравнительно редко, то выбираем гидроцилиндр одностороннего действия.

Рассчитываем диаметр поршня

где  - механический К.П.Д. гидроцилиндра, ориентировочное значение его 0.9

По вычисленным значениям Рдв и Dc учетом заданного хода поршня S выбираем типоразмер гидроцилиндра [4, стр 359] 4009-4635010.

Техническая характеристика: D=70 мм; Рн=10 МПа; S=140 мм.

Уточненное давление в рабочей полости гидроцилиндра Рдв:

Расход жидкости на гидроцилиндр составит

2.4 Выбор гидроаппаратуры и вспомогательных устройств

Гидроаппаратура служит для изменения параметров потока жидкости (давления, расхода, направления движения) или для поддержания их на заданное уровне. К ней относятся: гидродроссели, гидроклапаны различного назначения, парораспределитель.

При выборе гидроаппаратуры следует исходить из ее местоположения на разработанной принципиальной схеме.

По исходными параметрами для поиска типоразмера гидроаппарата являются номинальное давление в системе РН и номинальный расход Q принимаемый здесь по рассчитанному расходу для гидродвигателя Qдв.

Гидрораспределители по конструкции могут быть крановые и золотниковые (весьма редко - клапанные). Крановые гидрораспределители используются для давлений в системе не выше 10 МПа из-за значительных статических усилий, прижимающих пробку к корпусу и затрудняющих ее поворот. Наиболее широко распространены гидрораспределители золотникового типа. По числу позиций золотника они подразделяются на двух- трex- и четырехпозиционные. Двухпозиционные используются обычно для гидроцилиндров одностороннего действия, Трехпозиционные имеет кроме нейтрального два рабочих положения, при которых напорная линия связывается с одной или другой полостью гидроцилиндра или с одним из двух каналов гидромотора, в зависимости от требуемого направления перемещения выходного звена. В четырехпозиционных, помимо указанных, имеется так называемое плавающие положение, когда напорная линия и обе полости гидроцилиндра связаны с гидробаком. Жидкость при этом может перетекать из одной полости гидроцилиндра в другую.

Для данного гидроцилиндра выбираем трехпозиционный золотник реверсивный с электрогидравлическим управлением. Выбираем типоразмер золотника [4]: Г63-13

Характеристика золотника Г63-13:

Номинальный расход масла - 0,58 дм3/с;

Номинальное давление - 20 МПа;

Потеря давления при номинальном расходе, не более - 0,3 МПа;

Утечки через зазоры золотника при номинальном давлении - 0,005 дм3/с;

При выборе конструкции гидроклапана следует учитывать его функциональное назначение в разрабатываемом гидроприводе: предохранительный, переливной, обратный, редукционный. В данной используется два клапана: переливной и предохранительный.

Выбираем по каталогу клапаны [4]:

- предохранительные и переливные – БГ52-13

Характеристика клапана БГ52-13:

Номинальное давление 5…20 МПа;

Номинальный расход 0,58х10-3 м3/с;

Минимальный рекомендуемый расход 0,08х10-3 м3/с;

Перепад давления на клапане 0,5 МПа;

Утечка масла через клапан -

В качестве отделителей твердых частиц используют фильтры и сепараторы. Качество очистки определяется размером задерживаемых частиц: грубая - до 100 мкм, нормальная - до 10 мкм, тонкая - до 5 мкм, особо тонкая - до 1 мкм. Так как в исходных данных работы размер отделяемых частиц не оговорен, то принимаем нормальную степень очистки (размер частиц до 10 мкм).

Параметрами для подбора типоразмера фильтра являются: наименьший размер задержанных частиц, рабочее давление и пропускная способность (по расходу рабочей жидкости).

В данной гидросистеме фильтр расположен на линии слива. Давление там незначительное. Поэтому по каталогу выбираем фильтр магнитно-сетчатый сдвоенный ФМС-12 [4]. Фильтры такого типа предназначены для очистки от примесей минеральных масел вязкостью до 600 мм2/с.

Характеристика фильтра ФМС-12:

Наименьший размер задерживаемых частиц 5…10 мкм;

Наибольшее рабочее давление 0,6 МПа;

Количество магнитов 6;

Диаметр магнитов 55 мм;

Диаметр фильтрующего сетчатого элемента 50 мм;

Количество фильтрующих элементов 16;

Вес фильтра 4.65 кг;

2.5 Выбор рабочей жидкости

В объемном гидроприводе рабочая жидкость служит в качестве носителя энергии, смазки, а также является охлаждающей средой (отводит тепло из системы). В соответствии с назначением к ней предъявляются ряд требований, которым наиболее удовлетворяют минеральные масла и синтетические (силиконовые) жидкости. При выборе марки рабочей жидкости необходима заданная рабочая температура. По заданию t=40 оС.

Подобранный гидроцилиндр работает на минеральном масле вязкостью 18…60 сСт (мм2/с) при температуре 10 – 50 оС. Рекомендовано использовать масло индустриальное 20 и масло индустриальное 30.

Выбираем масло индустриальное 20 ГОСТ 1707-51. Вязкость 20 сСт при t=50 оС, плотность 890 кг/м3.

2.6 Расчет гидролиний

Гидролинии служат для передачи рабочей жидкости между гидроагрегатами, они связывают вое устройства гидропривода в единую систему (схему). К гидролиниям относятся трубопроводы и каналы в корпусах гидравлических устройств.

При расчете гидролинии определяются ее диаметр и гидравлические потери при движении жидкости;

Определение диаметра трубопровода

Значение диаметра трубопровода необходимо для подбора труб гидролинии, выбора гидроаппаратуры и вспомогательного оборудования, расчета гидравлического сопротивления гидролинии.

Расчет проводится по формуле

где Q - расход жидкости м3/с. В данном расчете его можно принять равным Qдв (см, п. 4.2.);

-средняя скорость движения жидкости в трубопроводе, м/с.

Величина скорости принимается по рекомендациям, полученным на основании экономических соображений: с увеличением  увеличиваются гидравлические потери, но уменьшается расход материала на изготовление трубопровода, снижается его масса. При давлениях до 5-6 МПа и большой длине гидролинии, когда гидравлическое сопротивление может существенно повлиять на К П Д системы, рекомендуемая скорость 3-4 м/с, при давлениях свыше 10 МПа и малой длине гидролинии, скорость может быть увеличена до 5-6 м/с, во всасывающей линии насоса она не должна превышать 1,5 м/с, а в сливной линии - 2 м/с.

Принимаем для данной гидросистемы один диаметр для всех линий и одну скорость движения жидкости υ=3 м/с.

Тогда:

По результатам расчета подбираем промышленную трубу по ГОСТ 8734-75: 10х1,5 (dвн=7 мм);

Уточненная скорость движения жидкости:

Определение гидравлических потерь в гидролинии

В этом расчете учитывают потери по длине и на местных сопротивлениях, используя принцип сложения потерь напора

где  - коэффициент трения;

l - длина гидролинии, м;

d - диаметр гидролинии, м;

 - коэффициент местного сопротивления;

- плотность жидкости, кг/м3;

 - скорость движения жидкости, м/с;

Для определения коэффициента трения необходимо вначале вычислить критерий Рейнольдса

где - коэффициент кинематической вязкости рабочей жидкости, м/с2.

При ламинарном режиме:

Тогда:

Режим движения жидкости - ламинарный (Re < 2320).

Таблица 1 – Местные гидравлические сопротивления

Тип сопротивления Количество Коэффициент местного сопротивления ξ

- отвод под углом 90°

- расширение на входе в гидроцилиндр

- расширение на входе в гидрораспределитель

- расширение на входе в фильтр

- расширение на входе в дроссель

- тройник прямоугольный для транзитного потока

6

1

1

1

1

3

0,15

1

1

1

1

0,15

Тогда

2.7 Определение параметров и подбор насоса

Основными параметрами, по которым выбирается типоразмер насоса, являются давление РН и производительность Qн.

Давление (удельная энергия, сообщаемая жидкости в насосе) затрачивается в объемном гидроприводе на выполнение работы гидродвигателем и преодоление гидравлических сопротивлений при передаче жит - кости. При расчете потребного давления указанные величины суммируется

где Рдв - давление на входе в гидродвигатель, Рдв= 3,47 МПа;

 - суммарные потери давления в системе, МПа причем

где  - гидравлические потери в гидролиниях, МПа (см.,п.4.2);

- суммарные потери в гидроагрегатах (дросселе, гидрораспределителей, фильтрах и т.п.), МПa.

Эти потери принимаются по справочным данным при выборе соответствующих гидроаппаратов и вспомогательных устройств.

Тогда:

=0,3+0,5+0,5+0,5=1,8 МПа;

Для определения производительности насоса необходимо сложить расход жидкости на гидродвигатель Qдв и утечки жидкости через неплотности в гидроагрегатах Qут, то есть

Утечки через неплотности принимаются по справочным данным при выборе соответствующей гидроаппаратуры (гидродросселя, гидрораспределителя, гидроклапанов и т.д.).

По рассчитанным значениям РН и ОН подбирается типоразмер насоса:

Аксиально-поршневой насос типа IID №0,5

Техническая характеристика

Номинальное давление 10 МПа;

Максимальная производительность за 1 об

(рабочий объем насоса), qН 0,003 дм3/с;

Максимальная производительность (подача)

QMAX 0,15 дм3/с=0,15х10-3 м3/с;

Частота вращения 2950 об/мин;

Потребляемая мощность (при QMAX) 2,35 кВт

Объемный КПД ηо 0,98

Полный КПД ηН 0,82

Необходимая частота вращения вала насоса

где qH - рабочий объем насоса, м3;

 - объемный КПД.

Тогда:

Мощность, потребляемая насосом (мощность на валу), вычисляется по формуле

где  - полный К.П.Д. насоса, по технической характеристике ηН=0,82.

Тогда:


2.8  Общий КПД гидропривода

Этот параметр характеризует потери энергии (гидравлические, объемные и механические) при ее передаче в объемном гидроприводе. Он определяется отношением мощности, реализуемой гидродвигателем, к мощности, потребляемой насосом

Тогда:


ЛИТЕРАТУРА

1. Гидравлика, гидравлические машины и гидравлические приводы./ Под ред. Т.М.Башты.- М.: Машиностроение, 1970.

2.  Башта Т.М. Машиностроительная гидравлика: Справочное пособие. - М.; Машиностроение, 1975.

3.  Вильнер Я.М., Ковалев Я.Т., Некрасов Б.Б. Справочное пособие по гидравлике, гидромашинам и гидроприводам. - Минск; Вышэйшая школа, 1976.

4.  Гидравлическое оборудование: Каталог-справочник. Т.1 и 2. - М.: ВНИИгидропривод, 1967.

5.  Васильченко В.А, Беркович Ф.М. Гидравлический привод строительных и дорожных машин. - М.: Стройиздат, 1978.

6. Идельчик И.Е. Справочник по гидравлическим сопротивлениям, М.; Росэнергоиздат, 1975.


© 2012 Рефераты, доклады и дипломные работы, курсовые работы бесплатно.